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A Propagator Expansion Method For Solving
Linearized Plasma Kinetic Equationb

With Collisions

1. INTRODUCTION

In 1946, Landaul gave a method for solving linearized plasma kinetic

problems where discrete particle interactions were neglected. Subsequent
2-4

studies of collisional plasmas have employed methods of solution tailored
to a specific form for the collision operator. In this paper, we give a general

expansion method for solving linearized plasma kinetic problems when colli-

sions are included. The method can be applied to a wide class of collision

operators and has, for example, produced closed-form results for the colli-

sional dielectric Function for the Paec _ead6collision operator.
The essence of the idea presented in this paper is the derivation of a

collisional propagator in terms of the collisionless propagator for the Vlasov

equation and the linearized collision operator, and the representation and use.

(Received for publication 21 June 1984)
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of the collisional propagator either as a series solution in powers of the collision

frequency v or as an asymptotic expansion as the collision frequency tends to

zero.

2. KINETIC EQUATIONS

The kinetic equations in the electrostatic approximation for a collisional S

plasma are:

aa [qe

~at a, m e[%--+y.- .;t)+ao0(v)] a - f(F 't) = , f (1) "-:-

E Eit) 4w [niqi + qe fdv V it)]1 (2)

where E is the self-consistent, electrostatic field; 0 is the force-per-unit mass

due to spatially uniform, stationary fields; aad 4 (f) is the nonlinear collision

operator that acts on the velocity-space coordinates of the electron distribution .

function f. The ions are assumed to provide a fixed neutralizing background with

charge density niq i while the other quantities have their usual meanings. We

seek a perturbation solution of the form

f(i 7 t) =f 0 (v1+ fl(Z, t) , (3)

E(r, t) - El(r, t) , (4)

where f0 is the zero-order solution and f1 and E1 are perturbed quantities. The

first-order equations using abbreviated notation are: 0

v + v + g 0 a- "L') fl'(t) SV(t) (5)

S 0'(t) 4 - qefd 3V f1'(t) , (6)Pa ar S

aSV(t) e a o (t) L f0 (7) ..-.. ;..

m ait .
e

where the subscript 1 on the perturbed quantities has been deleted and the super-

script v is used to denote collisional dependence, 0"(t) is the electrostatic poten-

tial, and L' denotes the linearized collision operator. The operator equation for

the collisional propagator operator Ur(t-t t ), is

8



+ r a 0 +go LV Uv(t-tI) 0(8

where Uv(t-tt) is given by

U(t-tI) = d J 'r'Jfd3v, Vrrvv~~ (9)

and where Gv(j?-r, -v, 1 t-t'), the Green' s function for the problem, is transla-

tionafly invariant in space and time. Here, Uv(.r) is subject to the causality con-

dition that UV(T)-0 forT <0 and the initial condition that UV(O)=l. In terms of

U"(t-t') the solution for fv(t) is

jt

fV(t) =UV(t) fV( 0) +J dt' Uv(t-tt) Sv(tI) ,(10)

0

where fV(Q) denotes the initial value of fv(t). It is convenient to transform Eqs..-

(6) through (10) to k-v-w space using

fv~t M T-,, f(T.' 0 =7 T- T1v-( (11)

fl'(o)=T~ fv (r,v,t) T t ?fv(t) ,(12)Ir ,

U~ ~ r~ dr dexp(- r + iwt) ,(14)

T- t, fi= u([f dt~ +x(& *14 ) 7 0  (15)

7.e Tichsn E.ffce148 ntlylroductionh to thse thr ofe Fouientegrals, on

Oxford University Press, London, Chapter 1.



k2V ("Jf k ~ U(o (16)

ZX mf O, (17)

U ~where fvj-(O) is the spatial transform of f t'(0). The operator UV(co) is .

jjV(W) fd ]V, 2i~t,v;v'.) ,(18)

ps and the Green's function in k-v'-u space is

GVkvtu =T-, G 1 (,v,v','r) .(19)

3. EQUATION FOR THE COLLISIONAL PROPAGATOR

IL In order to derive an equation for V(w). we consider a collisionless propa-

gator operator, U(t-t'), which obeys the operator equation

!-,. + ,r )~-, 0 (20)

and is subject to the same causality and initial conditions as those imposed on

Ut' fr). We return to Eq. (8) and write an operator equation for UL"(t-tt) in terms v~

of W~-t0 and ii':

where we have used causality and the initial conditions. Transforming Eq. (2 1)

to k-v-w space, we obtain

Solving Eq. (22) formally, we obtain

-U)L' U(,J) .(23)

Equations (15) through (17) and Eq. (23) give a formal solution to the collisional,

initial -value problem.

100
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4. ASYMPTOTIC EXPANSIONS AS v - 0
"I "

In order to pursue a solution by the expansion method, we introduce a

collision frequency v and write Lv = v L. In most cases, v will be small com-

pared to other frequencies of interest. For a wide class of collision operators

including integral, differential, and integral-differential, and for some con-

tinuity and integrability conditions on the functions that appear in the problem, 0
it can be shown that the iteration of Eq. (22) yields an asymptotic expansion for

j ()as ['-O:

( u)~ V(w) + v U(w) L U(w) + . .'.

+ ,,n[ V(,) Lin i(w) + .... (24)-'

By this we mean that if f(w) w(,v w) and fv(w) ULv() (w), then the action of

the iterated Uv(w), given by Eq. (24), on (w) generates an asymptotic expansion

for '(w) as P---O. Similar results can be obtained for the iterated ev (w). If the

iterated ft'(w) is a divergent asymptotic expansion, then Eq. (24) may not be P

truncated and used to approximate the initial-value problem as t- Co because

time secularities will appear in the solution when transformed to r-V'-t space.

However, even if the iterated E"M is also divergent but v «wp <<I, where Wp is

the plasma frequency, then E (w) may be truncated at first order in v and set
equal to zero to obtain an approximate solution for the roots of the dispersion -

relation. This provides a solution for the normal mode and stability problems

accurate to order ,/w . The expression for the collisional dielectric function
p -

truncated to the first order in v, denoted by E1(k, W). is

* ~23
F_ (;kw) = -i {T +  Tl(k) (25)

Tn(k' ) =fd3v U(M)L1 n U(& )k" f(v') (26)

S

where fo has been normalized to one.

%.
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5. UNIFORMLY CONVERGENT EXPANSIONS IN POWERS OF v •

For the special case when U(w) is the free-particle, collisionless propagator
and L is an integral operator, Eq. (22) is an integral equation for UV(w). In our

study of problems of this type, we have found that if the functions that appear in

the problem are continuous, integrable, and obey some reasonable uniform

bounds, then the iteration procedure yields the Neumann series for the associated

integral equation and

=UN.) + nFl Vn()L L ,27

is the power-series solution for UV(w), uniformly convergent in the neighborhood

of v=0. In this case the iterated ev(u) is:

2 28
"~~ V (Z W ) = 1 i V n T n (Z , w (2 8 ) . . .

n=O

nS

where fo has been normalized to one and the expression for the free-particle,

collisionless propagator has been used:.7

T( ) = d3v' "6 " .(30)

For problems of this type, it also follows that Eq. (28) is the power-series

solution for E'(w), uniformly convergent in the neighborhood of V=0. If Eq. (27)

can be summed in closed form and analytically continued for Im w<b, then the

Soinitial-value problem is solved.

12 -
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6. SYMMETRY PROPERTIES

It can be shown that G (k,vv',w )* G1 (-k,v,v', -w*)with similar formulae

for the other k-v-u quantities discussed in Sections 2 and 3, and that the roots of

the collisional dispersion relation, e"(w)=0, obey the relation w'(k) = -w(-k)*.

The same symmetry properties hold for each of the iterated k-v-w quantities

discussed in Sections 4 and 5 when truncated to the Nth order in t,.

7. SOME APPUCATIONS

For the free-particle, collisionless propagator, three types of linearized .. 

collision operators have been studied: integral, differential, and integral-differ-

ential.

As an example of the integral-type collision operator, we studied the simple

BGK 2 collision operator, given by

L z' [-1 + f0(T)fd3v' I , (31)

where f 0 has been normalized to one. We found that the iterated U"(w) and the

iterated E"(w) are uniformly convergent power-series solutions in r that agree

with expansions of the exact results.

The linear simple Fokker-Planck collision operator is a differential operator

and has been studied by Lenard and Bernstein. It is

Lz  ' + v2 (32) " .!"-

where vT is the electron thermal speed. We found that the iterated U1'(w) is a

divergent, asymptotic expansion as r, -0 in the sense described above, yet the

iterated e" (w) for fO Maxwellian is a uniformly convergent power-series solution

in t and agrees with the expansion of the closed-form result for E (M). For

example, the solution to the dispersion relation in the long wavelength limit to

order v yields the total damping rate F". which is the sum of the Landau

(collisionless) part ' _and the collisional part - k" where

'1= - /2 + 2(k/kD 12 + . .. I (33)
_0

Here kD is the Debye wavenumber. Note that these results are obtained without

solving a differential equation involving L".

13
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* *-* . . .. -.- -.

The linearized Balescu5 
- Lenard6 collision operator is an integral-differ- • "

ential operator. We have found that the iterated Cv(w) is a divergent, asymptotic

expansion as v - 0 and we have obtained closed-form results for the iterated

Ev(w) to the first order in r,. Using tiese results, we have found the solution for

the collisional dispersion relation in the long wavelength limit for the linearized

Balescu - Lenard collision operator and for f0 Maxwellian. We obLain the total
L

damping rate 1 jry which is the sum of the Landau (collisionless) part -y and

the collisional part -jvk , where

2 2

44

- Vee + 1 4 + .. : :--

21-2 +(34)2 -..i k-

4 1/2 qe-"-" -

,ee 3 no T n A (35)
m 112 T 3/2 -

e e
- "1/2

Here Vei Fee, k = 1, kD is the Debye wave number, no is the unperturbed

density, Te is the unperturbed temperature, and In A is the Coulomb logarithm.

Equation (34) is new and was obtained in collaboration with B. Basu. A detailed

discussion of its derivation is quite lengthy and will be published elsewhere.

8. DISCUSSION

Equations (21) through (23) are the main results of this paper. They give

equations for the collisional propagator in terms of the collisionless propagator

and the linearized collision operator. An iterative solution of Eq. (22) or (23).

given by Eq. (24), which is what we call the expansion method of solution, when

substituted into Eqs. (15) through (17) provides a solution of the linearized plasma

kinetic equations for a given collision operator. This method of solution as

applied to the collisional plasma problem discussed here is new and is particularly .

useful when a direct solution of the problem cannot be found. For example, the

problem of finding the direct solution of the linearized plasma kinetic equations

with the Balescu-Lenard collision term and then using it to find the collisional

damping of the electrostatic plasma waves appears to be intractable. But by

applying the expansion method, we have been able to obtain the collisional damping rate

for f 0 Maxwellian to the first order in the plasma parameter, which is given by

Eqs. (34) and (35).

14
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